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ABSTRACT

Existence of subcritical Hopf-bifurcation in a mathematical model based on simultaneous effect of two toxicants
on a biological species [1; ch.3] is considered, in this paper. Here, the biological species is growing logistically
in its habitat which is simultaneously affected by two different toxicants, the first toxicant is being emitted by
some external sources and the second toxicant is discharged by the biological species itself through its various
actions (such as household discharge, vehicular exhaust, industrial effluents, in the case of human population).
We have shown that the model undergoes a subcritical Hopf-bifurcation at the critical value of emission rate of
toxicant by biological species itself 1. The analysis of Hopf-bifurcation shows that the density of biological
species N is stable but after crossing the critical level of A, density of biological species becomes zero.

KEYWORDS: Biological species, mathematical model, subcritical Hopf-bifurcation, limit cycles.

l. INTRODUCTION
It is well-known that mathematical models based on system of ordinary differential equation have a set of
equilibrium points. These equilibrium points provide the qualitative behavior of model such as model have
stable solutions, local birth or death of periodic solutions. A study of Hopf-bifurcation describes the existence of
periodic solutions when parameter crosses a critical value [3, 5, 7-9]. In a system of differential equation, Hopf
bifurcations occur when a complex conjugate pair of eigenvalues of the variational matrix at an equilibrium
point becomes purely imaginary.

Agrawal [1; ch.3] proposed the following model to study the simultaneous effect of two toxicants (one of them
is being emitted by some external source and the other one is discharged by the biological species itself) on a
logistically growing biological species:

dN (W UIN ToN?
at VRN T T

dT,
E = Q - 51T1 - (XlTlN + T[lleU]_

dr,

W = AN - 62T2 - aszN + T[ZVZNUZ (1)
U,

E = _ﬁ]_Ul + alTlN - VlNUl

dU,

W = _ﬁzl]z + aszN - VZNUZ

N(0) =0, T;(0) = 0, U;(0) = ¢;N(0), 0<m<1, i=1,2

Here N(t) is the population density of the biological species. @ is the emission rate of the first toxicant into the
environment with concentration T, (t). The positive constant A represents the rate coefficient of emission of the
second toxicant caused by household discharges of the biological species with environmental concentration
T,(t). U,(t) and U, (t) are the respective uptake concentrations. &§,’s are the natural washout rate coefficients of
T;(t), a;’s are the depletion rate coefficients of T;(t) due to uptake by the biological population. g;’s are the
natural washout rate coefficients of U;(t). v;’s denote the depletion rate coefficients of U;(t) due to dying out of

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[381]


http://www.ijesrt.com/

i THOMSON REUTERS
ISSN: 2277-9655
[Agrawal * et al., 6(9): September, 2017] Impact Factor: 4.116
IC™ Value: 3.00 CODEN: IJESS7

some members of the populations and fraction m; of this re-entering into the environment. c¢;’s are constants
relating to the initial uptake concentration U;(0) with the initial population N(0). All the constants taken here
are assumed to be positive. The function r(U,, U,) represents the growth rate of biological species and K (T, T5)
is the carrying capacity function of the biological population.

In, this case, all the positive solutions of model must lie in the region Q, (see [1, ch.3])

AK
{(N TuTy U Uy 0 SN < KyO<T 4 U; <20 <T,+ U, < 0}
610 620
Where 610 = mil’l(51, ﬁl) ; 520 = min(az, ﬂz)

The model system (1) has two non-negative equilibria, namely E; (0,62, 0,0, O) having a behavior of saddle
1

point and E,(N*, Ty, T,, U;, U3) is locally and globally asymptotically stable under certain conditions. But, it
is also seen that the equilibrium point E, loses its stability and shows a subcritical Hopf-bifurcation for emission
rate of toxicant 1. To extend the validity of model, we analyze the model (1) for existence and nature of Hopf-
bifurcation.

1. HOPF-BIFURCATION ANALYSIS
We analyze model system (1) for the existence of Hopf-bifurcation [5, 8] corresponding to the equilibrium point
E, by taking A as a bifurcation parameter. The necessary and sufficient conditions for the existence of Hopf-
bifurcation in model (1): Eigenvalues x;, = Ry, + il; (k = 1,2,3,4,5) of the Jacobian matrix M, have a pair of
purely imaginary eigenvalues and others eigenvalues have negative real parts (i.e., R{,R, =0, I, = —I, #
0 & R;, R,, R5 < 0) at the critical value of parameter 1 = 1*.

The model system (1) linearizes about the equilibrium points E, by using the following transformations:
N=N"+n, T, =T + 14, T,=T; + 1, Uy =Uf +uy, U, =U; +u,

where n, T4, T,, Uy, U, are small perturbation around E,.
The matrix form of model (1) in the variables n, 7, T,, u; and u, can be written as,

X=AX+B (2)
where
b
[Tl] [an A2 Q13 QAyg a15'| [ 1]
| T1] |G21 Q22 0 ay O | | b2 |
X =121, A=laz; 0 azx 0 azsl, B=|b3|
|lu1J| Ay A4z 0 ay O J |b4|
Uz as; 0 as3 0 ass leJ
moreover,
B roN* _ 1pN*? aK] _ 1pN*? [61(]
a1 = K(Tl*, Tz*)’ a1y = KZ(Tl*'TZ*) 6T1 ‘ aiz3 = KZ(Tl*’TZ*) 6T2 s
or
Ay = N* a—Ul]Ez‘ a;s = N* [auz] az = —(ayTy — myv, U7),
azp = —(8; + ayN¥), Azy = 7T1V1N ) az; = (A — a, Ty + myv,Uy),
azz = —(8, + azN"), aszs = MV, N7, agy = (—vi U7 + ayTy),
A4y = ayN7, a4 = —(By +v{N¥), as; = (—v,U; + a,T3),
as3 = a;N*, ass = —(B, +v,N*),
and
b = 6r] +[6r] [ +[6K] 5
SR T M FTTA Mz + K2(T1,T ) IEEA PP
2r0N* [ 61(] To )
T n——==.n
K2(T1,T ) aTl 6T2 K(T,T,)
bz = T[]_Vl.nul - al.n‘fl, b3 = 7T2V2 nuz — 5. Tsz,
b, = a;.nty —vy.nUy, bs = a,.nt, —Vv,.NU,
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Here, AX is linear and B is nonlinear part of model (1). Also, A is the Jacobian matrix of model (1). The
characteristic equation of matrix A can be written as:

p(x) = x°+ ¢ x* + cx3 + c3x% + ¢4x + ¢ 3)
The value of the coefficients c;, c,, c3, ¢4 and cs are defined in Appendix.

The model system (1) undergoes a Hopf-bifurcation corresponding to the equilibrium point E,, if characteristic
equation (3) have two purely imaginary complex conjugate roots and other three roots have negative real parts at
the critical value of parameter A.

Now, according to the Liu’s criterion [10] and Existence of Hopf-bifurcation in a 5-dimensional system [6],
model (1) undergoes a Hopf-bifurcation at the critical value of A = A* > 0 under the following Theorem:

Theorem 1. The model system (1) undergoes a Hopf-bifurcation corresponding to the equilibrium point E,, if 1
crosses the critical value A* > 0 such that

@@ ¢;(1) >0, i=1,2,3,4,5.

(b) Hy = [cic; —c3lh=pr > 0.

(©) Hs = [cico05 — cfcy — c§lh=pr > 0.

(d) Hy = [(c16; — c3)(c3cq — €2¢5) — (c1¢4 — €5)%]a=p = 0.

1 dHy
@ [l
_Cl 1
2 —2¢ —C
here, Mg = -2 -
where, M: (c16, — c3) cb—cs Cp— b

0 1 —c3

C3C4 - (,'2(,‘5
p=""2>

C1C4 — Cg

o O
S o O

A=2"

The above Theorem: 1 characterizes that equilibrium point E, become unstable, when parameter A crosses the
critical value 1*.

1. NATURE OF BIFURCATING PERIODIC SOLUTION

To know the type of Hopf-bifurcation, we have derived explicit formulae for most important coefficients u,, f3,,
T, given by Hassard et al. (1981) for parameter A. The signs of these coefficients determine the directions and
stability of bifurcating periodic solutions. We have derived explicit formulae using normal form and center
manifold theory [5].

Without loss of generality, we transform the system (1) in normal form with an assumption that the eigenvalues
of Jacobian matrix A are +iv, —J;, —/J,, — /5.

Let X = PY, then the normal form of equation (2) is
Y=JY+F, Y = col.(¥1,¥2,¥3, Y4, ¥s) (4)
where
[O -v 0 0 0]
[v o o o 0|
J=prPap=|0 0 -, 0 0]
lo o o - o]
lo o o o -
[F10r1 Y2, Y3, Y0 ¥5) |
Fy(Y1, Y2, Y3, Y4, Ys)
F3(¥1, Y2, Y3, Y4, Ys5)
Fa(V1, Y20 Y3, Y0, 5) |
[Fs(yl,y2.y3.y4,ys)J

and F=PIf =
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Here, P is a transformed matrix defined as:
[P11 P, Pz Py P15]
|P21 Py; Py3 Py stl
P=|Ps; Psy; P33 Py Pyl
|P Pia Py Puy Pis
lPy P, Poy Poy Pogl

where
Py =LiLg—LyL,, Py = L1L; + LyLg, Pz = K3,1K4q,
Py = K3:Kyo, Pi5 = K33Ky3, Py = LiLg + vay Ly,
Py = LyLg —vay Ly, Pz = K3, K¢, Py = K32Ko3,
Py5 = K33Kg3, P3; = LyLe +vazLy, P3y = LyL; —vasiLe
P33 = K11 Ky, P34 = K12Kyo, P35 = K13Ky3,
Py1 = LiLs +vay L, Py = LyLs —vay, Ly, Pis = K31Ks3,
Pyy = K33Ks, Pys = K33Ks3, Psy = L3Lg + vas, Ly,
Ps; = L3L; — vas, L, Ps3 = K31 K4, Psy = KKy, Pss = Ky3K,3
Also,
Ly = azsas3 — azsass + v, L, = v(ass + ass), L3 = azsas; — as1ass,
Ly = a31as5 — A35Gs1, Ls = ApQ41 — 031Q42, Le = 4045 — Gp2047 + V7,
Ly =v(az; + ), Lg = az1G44 — Q24041
Fork=1,2,3
Ky = (assas; — az1ass) + asyi, Koi = (a31as3 — a33as51) + asiJy,
K3 = (33055 — azsass) — (ass + ass)Ji +Ji,
Kax = (22044 — 024045) — (32 + @sa)Jic +Ji,
Ksi = (a21a42 — A41022) + sy, Koie = (@41a24 — A31G44) + az1J
and
[[1(1 Y2, 73, Y4 ¥5) |
| 20012, Y3, Y4 Vs) |
f=A00Ly2530s) |
| £ 2, v3. 90, v5) |
lfs (V1) Y2, Y3, Vao ys)J
where
f1(V1 Y2, Y3, Yar Vs)
_ ar ar 0K )
- aul] My [GUZ] Mz + KZ(T;,T ) “aT1 Lt [GTZ]EZ 'TZ] n
ZrON* “ 61(] ] To )
Tyl N ———==.n
KZ(T*,T ) 6T1 6T2 K(T,T,)
(1 Y2, Y3, Yar Ys) = myvy.nuy — ay. 7”1'
f3(V1, Y2, Y3, Y4, ¥5) = TaVa. MUy — A3 . NTy,
fa(V1, Y2, Y3, Ve, ¥s) = aq.nTy — vy nuUy,
fs(V1, Y2, Y3, Y4, ¥5) = Q2. NT = V. 1U,
Here,

5 5 5 5 5
n=zp1z3’1' T1=zpzz}’z: T2=ZP313’1' u1=ZP4lyl, u2=zpsz)ﬁ
=1 =1 =1 =1 =1

Now, we evaluate following quantities at A = 1* and (y4, ¥2, ¥s, V4, ¥s) = (0,0,0,0,0).

{(62F1 .\ 62F1) N (62F2 N a%)}
g1 = i :
Hg\oy2  ay? oyf = 0y}
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1((0%F, 0*F, _ 0°F,\ (0°F, 0°F, _ 9°F
oz =7 -2 +i >——=— 12 ,
4(\oyf dy; 0y1Y, dyr 0y, 0y1Y2
1(/0%F, 0%F, _ 92F,\ (0%F, 0%F, _ 8%F,
gzo = — 2 2 + 2 a + 1 2 2 2 a )
4 (\ 9y dy; Y1Y2 0y{ dy; V1Y2
3

921 =Gy + Z(Zaﬁowﬁ + G1p1w5o)
k=1

1((0%F, @3F, 03F, 03F (03F, 03F, 03F, 03F,
Ga1 =75 st o355, ol 3 " 3v3  auio. T z
8(\dyr dy; 9dyfy, Oyny; dy;  0y; 0¥y, OV1Y;

where,

For k=1,2,3.
1 {( 0%F; 0%F, ) 4 ( 0°%F, 0%F, )}
i _
110 2 a}ﬁa)’(mz) a}’23}’(k+2) 6)’1a}’(k+2) a}’263’(k+2)
Gl"lzz 919y ees, 37,0 T\ 107000, | 97,0
Y10Y(k+2) Y20Y (k+2) V10Y(k+2) Y20Y (k+2)

( F(k+2) aF(k+2)>

a}ﬁ aJ’zz
_ <6 Forzy 0°Fgany 21 a21:(k+2)>
=3 oyf ay; 3y1y2
oM h
11 ]k ’ 20 ]k + Zlv

To determine the nature of bifurcating periodic solutions, we evaluate the following coefficients at critical value
of parameter 1 = A*:

i 1 1 Re C,(0)
C,(0) = 2 920911 — 2191117 —§|902|2] +§921' o= ———F——

Re x;
ﬁz = ZRe Cl(O), Tz
_ (mG(0) + gy Imxp) @

v

After evaluating these important coefficients for parameter A, we can state the following result about the nature
of bifurcating periodic solutions corresponding to the parameter A.

Theorem 2. Corresponding to the parameter A, if 4, > 0 (or u_2 < 0), the model (1) shows a supercritical (or
subcritical) Hopf-bifurcation and the bifurcating periodic solutions exist for A > A" (or 1 < 1), if B, <
0 (or B, > 0), the bifurcating periodic solutions are stable (or unstable), if T, > 0 (or T, < 0), the period of
bifurcating solutions increases (or decreases).

V. NUMERICAL SIMULATION
In the previous section, we have found conditions for existence of hopf-bifurcation and its nature. To

numerically clarify that model (1) has a subcritical bifurcation, we assume functions r(U;, U,) and K(T;,T,) as
follows:

by, T by T.
T(Ul; Uz) =1y — rlUl — TZUZ, K(Tl' TZ) - KO _ 1141 211>

1+ b;,T; 1+ by,T,

(5)

and define the values of parameters:
ry =020, 1, =050, 1r,=080, K,=10.0, b;; =0.20,
by, =10, by =0.01, by, =20, Q,=0.005 & = 0.0006, (6)
&, = 0.0035, a, = 0.45, a, = 0.002, m, = 0.0001, 7, = 0.08,
v, = 0.05, v, = 0.06, B = 0.001, B, = 0.003, A =0.0001
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Figure 1: Real part of eigenvalues of jacobian matrix
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Figure 2: Imaginary part of eigenvalues of jacobian matrix A
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Fig.1 and Fig.2 shows the real and imaginary parts of eigenvalues of Jacobian matrix A. The two eigenvalues
become purely imaginary (i.e. R, = R, = 0 and I, = —I, # 0) at the critical value of * = 0.023955, which
confirm that model system (1) undergoes a Hopf-bifurcation at A*.

Fig.3 shows the dynamic behavior of N corresponding to 4. As the value of A increases the equilibrium level of
N decreases. At the critical value A* = 0.023955, system shows a subcritical Hopf-bifurcation. For the value of
A > A%, the equilibrium level again decreases but the unstable limit cycles lies for A < A*. Hence, the density of
biological species becomes stable at equilibrium level for 1 < A*. For all value of 2 > 1%, the density of

biological species becomes zero (see Fig.4).
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Figure 3: Dynamic behavior of N with respect to 4
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Figure 4: Time series graph corresponding to 4

V. CONCLUSION
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In this paper, we have analyzed a mathematical model based on simultaneous effect of two toxicants on a
biological species [1, chap. 3] for the existence and nature of Hopf-bifurcation. The model system (1) has a
subcritical Hopf-bifurcation at the critical value of emission rate of toxicant by biological species itself 1. The
Hopf-bifurcation analysis of model system (1) shows that as emission rate of toxicant crosses the critical level,

all the members of biological species die out.

VI.  APPENDIX: VALUE OF COEFFICIENTS ¢4, ¢3, ¢3,¢4 AND c5

c1 = —(ay; + azy + azz + as + ass)

Cy = (33044 — A53035 T Q055 + App044 t Ap2033 — Q42024 + A4qQ55 + A11055 — A31093 + A11033
+a11022 + 411044 — A51015 — Q41014 — Q21012 T A33055

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

[387]


http://www.ijesrt.com/

% THOMSON REUTERS

ISSN: 2277-9655

[Agrawal * et al., 6(9): September, 2017] Impact Factor: 4.116
IC™ Value: 3.00 CODEN: IJESS7
C3 = —Q33044055 T A53035044 — (2044055 — (2033055 — Q2033044 1 Ap2A53035 1 Q42024055

+ Q42024033 — Q11033055 — 011033044 T 11053035 — A11022055 — A11022044
— 11022033 T (11042024 — Q11044055 T Q21012055 T Q21012044 + 021012033
— 21042014 + A31A13055 + A31A13044 — A31A53A15 + A31022013 — A41A12024
T A41014Q55 + Q41014033 T Q41022014 — A51Q13035 T A51015044 + A51015033
+ a51022015
€y = Q11033044055 — (11053035044 T Q11023044055 + (11022033044 — A11022053035
— 11042024055 — Q11042024033 — (21012033055 — (21012033044 + A21012053035
+ a21042014055 + 21042014033 — (31013044055 + (31053015044 — A31022A13055
— (31022013044 + A31022053015 + (31042013024 + Q41012024055 + Q41012024033
— (41014033055 + Q41053014035 — Q41022014055 — Q41022014033 T A5102013035
— A51022015044 — A51022015033 + A51042A15024 — Q42024033055 — A21012044055
+ A42053024Q35 + A51013A35044 — Ap2053035044 T A22033044055 — A51A15033044
+ 11022033055
Cs5 = —QA11022033044055 t (1102253035044 T (1104224033055 — A11042053024035 +
A21012033044055 — (2112053035044 — Q1042014033055 + A21042A53014035 + A31022013044055 —
A31022053A15044 — (3142013024055 + A31A42053015024 — A410120240330s55 + Q4112053024035 +
A41022014033055 — (41022053014035 — A51022013035044 T Q5102015033044 + A51042013024035 —
A51042015024033-
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